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Abstract
Well completion selection and design involve the selection of optimum well completion architecture and
associated downhole equipment to deliver hydrocarbon to surface in a safe and efficient manner. A number
of well architectures can be conceived for a given application, and a plethora of equipment is available
across the industry, with hardware to meet a wide range of operating conditions including hole size, pressure,
temperature, flow rate and fluid type. This wealth of choice results in a highly complex and challenging
selection process that today is done manually, relying on subject matter experts and local best practices
through trial and error approach. As a result, the process can be quite inefficient, designs can be suboptimal
and fail to consider unique reservoir and well conditions leading to premature equipment failure causing loss
of production and well integrity. These failures can have impact ranging from unplanned well intervention,
equipment pull outs, fishing operations, extended rig time, workovers, or even complete well loss—costing
the oil and gas industry billions of dollars. The shortcomings in design are therefore ripe for innovative
digital solutions.

This paper describes how manual completion selection process can be seamlessly transformed into an
intuitive digital solution providing insights for the well completion selection process. The proposed digital
solution describes software tools and architecture used to consolidate thousands of historic, unstructured,
completion schematic data into a structured database. It automatically maps the completion architecture
and equipment details to relevant operating environments, captures nonproductive time and highlights
installation challenges. The solution also identifies correlations and data trends across various types of well
designs and equipment categories, using advanced artificial intelligence and machine learning algorithms
to provide insights into equipment reliability, operational efficiency, total cost of ownership and production
performance. A minimum viable product consisting of 24,000 wells from across the world has been
successfully developed to demonstrate key value propositions.

New data coming in from recently completed wells can be seamlessly integrated with the existing data
bases and the algorithms constantly improvise its learning process to provide better accuracy. The digital
solution proposed for well completion selection and design process ultimately enables oil and gas companies
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to optimize well completion configurations and equipment that can deliver maximum value. It allows
them to identify offset well issues, derisk operational concerns, check compatibility of equipment with
respect to dimensional constraints, pressure and load rating requirements, thread configurations, metallurgy
constraints, seal elements, complete well on digital file with tracing and accountability.

Introduction
Well completions play a key role in providing a fluid conduit for the reservoir fluids to be produced to
surface while maintaining the integrity and safety of well operations over the life of the well. On average
50,000 wells get drilled every year and an estimated 2 million wells are currently active across the world.
Every single one of these wells requires completion equipment, and each equipment is selected to address
a key purpose. These selections are captured in millions of well configuration files, each of which contain
information in unstructured formats across a wide range of formats. A total of 30% to 40% of the well
construction budget goes into completion equipment for both surface and downhole hardware. It is estimated
that $7 to 8 billion dollars are spent every year to procure completion hardware. This hardware includes
the following equipment (Fig. 1):

• christmas trees

• casing, tubing, tubing hangers

• valves hardware including safety valves, isolation valves and flow control valves

• liner hangers, packers

• screens, inflow control devices (ICDs) and autonomous ICDs

• sliding sleeves

• grave pack

• artificial lift including ESP, PCP, SRP, gas lift and ESPCP

• surveillance hardware including downhole gauges and fiber optics cables

• other completion accessories such as nipples, plugs, entry guides, shoes, flow couplings
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Figure 1—Well completion describing key equipment

Well completions concept selection is evaluated at inception of field development planning through
reservoir simulations utilizing exploration and appraisal data. Various scenarios of well types (vertical,
horizontal, multilateral) are evaluated for maximizing reservoir recovery, well life and NPV. Sinha, Yan, and
Jalali have done some extensive work on manual completion architecture selection process. Field experience
across similar environments is also considered via best practices. Unfortunately, most of the simulations
do not model detailed completion equipment, their reliability undermining the design's impact on flow
behavior, operations and performance. This leads to suboptimal completion equipment recommendations
and poorer well designs. From the time equipment configurations and selections are made to the point
of installation, the cycle could be multiyear depending on the complexity of the completion design. Any
poor choices made cannot be reverted and the well will be delivered as planned with lower than expected
performance.

The lack of proper selection tools, which can incorporate parameters of well, reservoir, production,
drilling, procurement deadlines, reliability and operations throughout the entire well completion life
cycle performance is key to maximizing the value of an oilfield asset. The benefits of lessons learned
captured in historic data across various assets is frequently disregarded or is siloed to specific work
environments or within individual companies. Collaboration between teams of different disciplines is
inefficient due to the need for frequent exchange of noncontextual data in unstructured data formats,
resulting in miscommunications, missed opportunities and poor user experiences.

The completion design decision tree Fig. 212 guides users through the traditional well completion selection
journey where users are forced to gather data from various sources and domains to achieve their goal, using
a stage gate process. This traditional approach can typically take months for a team to finalize a single
standard design, and the nonsystematic approach across multiple teams often results in mistakes and design
oversights. These traditional approaches are not scalable, inefficient, fail to always lead to optimum designs
and do not result in a standard approach to design.
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Figure 2—Completion design decision tree.

Traditionally, well completion planning is a multidisciplinary team exercise with involvement of
various domains (Completion, Drilling, Production, Reservoir, Procurement) from operating companies and
completion equipment providers.

The goals and objectives differ across participating parties, from recovery optimization to safety, rig time
and reliability. The challenge of reconciling all factors and developing a comprehensive well completion
strategy remains complex. Traditional approaches have led to a planning and design process that is highly
subjective and error prone. Knowledge and best practices are siloed within geographies and between
domains. Experts struggle to reconcile the diverse objectives that must be considered when attempting to
optimize both the well plan and design.

The result is a suboptimal plan and design that does not take into consideration all aspects of the challenge
at hand. Reservoir and well conditions are not fully considered in the process and cause unnecessary
equipment failures. Lessons are not learned from previous installations with avoidable errors repeated in
both neighboring wells and similar basins. Operators and service providers are left struggling through
unplanned operations to address mistakes that could have been avoided. And, the process is unfortunately
not evolving to prevent repeats. Fig. 3 walks through an example of the high-level complex process of
gathering inputs from various domains for a successful well completion design.



SPE-201725-MS 5

Figure 3—High level view of the cross-domain inputs required for design

A new approach is required. A forward-looking approach that leverages the tools and resources have
become available in the digital age. The science required to validate designs from a purely technical
standpoint exist today, even if they are not being used in a systematic fashion. What is lacking is an ability
to understand what has been done historically, including what has worked and what has failed, and the
analytics to assess how this impacts future decisions. The industry is built on a wealth of data that has
been collected for decades, and which is rarely used in the completion planning and design phases. This
must change to deliver new platforms that are able to analyze track records and determine optimal future
decisions. Szemat-Vielma, W., Murray, T., Kiaie, A., Bolchover, P., and Yao, J.3 have demonstrated a digital
solution for well construction planning with a focus on drilling.

This paper proposes an innovative data-driven approach to well completion planning and design.
Harnessing advances in machine learning and natural language processing (NLP), historic data can be
transformed into a wealth of best practices, lessons learned and fit for basin designs that have a demonstrated
track record. Taking into consideration the diverse criteria that drive both planning and design, this approach
can provide unbiased recommendations into how well completions should be designed and completed to
produce optimal solutions.

Solution Architecture
The digital revolution of the last three decades has transformed how traditional problems have been tackled
across nearly all industries. The oil and gas industry is no exception. Each player within the space must
either go through the digital transformation or risk becoming obsolete. This rapidly changing landscape
presents numerous opportunities for innovation and novel ideas. Traditional problems can be tackled from
different and previously impossible angles, allowing for step changes in how solutions are delivered. Truly
optimal solutions can now be achieved through the use of novel approaches in machine learning and artificial
intelligence. Leveraging these digital tools is key to delivering a solution to the problem of optimal well
completion design.

A modern solution depicted in Fig. 4 would need to be developed on cloud technology using the latest
tools available for understanding and analyzing large data sets. The solution would be broken into three
distinct areas:
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1. Data ingestion.

a.Unstructured schematic files: the numerous sources of data from which the analysis will be
performed

b.Schematic ingestion service: pipeline to ingest all unstructured data from numerous sources
c.Monitoring service: monitor data sets for changes and continually ingest and propagate

changes throughout the system
2. Data analytics

a.Schematic analytics service: analysis and cluster the structured data to identify and extract
correlations within and across well architectures

b.Schematic search service: search and explore the expansive data
3. Visualization and insights

a.Recommendation interface: deliver recommendations and insights to the end user
b.Schematics analytics dashboard: visualization and understand the well architectures
c.Schematic search: search and explore the graphical well representations

Figure 4—High-level solution architecture

Data Ingestion

Ingestion Strategies
The key to any digital solution is the ability to intelligently use the wealth of historic data that has been
gathered over decades of operations within the oil and gas space. For well completions, this comes in the
format of completion schematics and their corresponding well contexts. Unfortunately, despite years of use
and the creation of millions of documents in this field, there has been no agreed industry standard for the
representation of the data. The WITSML* standard is the closest to an agreed industry standard for the
representation of all downhole equipment, but this has unfortunately not been widely adopted.

The result of this failure to standardize on data formats has led to thousands of disjointed databases
containing huge volumes of unstructured data describing the global well completions. Thus far, the data has
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been gathered for the purpose of record keeping rather than usage in forward-looking designs. A particular
well completion design could be looked up, analyzed and used as input for a future design in a highly manual
and subjective manner. Knowledge of where and how to search these databases to discover best practices
and past failures depended on the end users understanding of historic wells.

The first challenge is therefore clear—liberation of the source data into a structured and reuseable format.
The key to achieving this goal is the usage of the advances in optical character recognition (OCR) packages,
NLP tools and machine learning (ML). Combining all three techniques has allowed for the creation of
ingestion pipelines that process a wealth of well completion formats and output structured data that clearly
captures the design. This information includes the equipment run in the well, from casing and liners to
individual jewelry throughout both the upper and lower completion. The volume of data required the
solution to be developed on cloud technology with scalable resources and the ability to connect liberated
data to a multitude of platforms and solutions.

In addition to the well schematic data, there was also a need to ingest historic service quality reports
that highlighted any incidents that might have occurred during the installation and operation of the well
completion. These incidents could highlight issues with hardware, process, design and incompatibilities
between equipment and context. Again, this data had historically been used for auditing purposes, but never
leveraged towards a solution that would consider all past successes and failures to develop truly optimal
well completion designs. Their addition provides key equipment performance and reliability insights that
help guide the end user toward inherent best practices and designs fit for the target basin.

Ingestion Pipeline
Data ingestion engine is key for deriving any value from unstructured data. Figure 5 below shows the
organization of the service to ultimately convert data from various formats into structure data.

Figure 5—Analytics pipeline

The ingestion pipeline supports ingestion of document formats such as Microsoft Excel* sheets, PDF*
documents and JPEG* images of schematics. The various types of documents themselves are exported to a
shared folder on the cloud as and when they become available. A cloud process that has subscribed to folder
activity gets notified of the presence of the new documents. This process then kicks off the appropriate
parser for the particular document type and converts it into a key-value pair and stores it in a data lake.
Parsing of data involves the analysis of sentences into their parts and describes their syntactic roles. After
processing each document, it archives the processed document in another folder.
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Microsoft Excel* Schematics.   Extraction of schematic information from Excel documents requires
converting the data in rows and columns into key value pairs. Since there is no standard template in the input
documents, the algorithms have to infer the presence of different tables and the different ways in which
information can be present in those tables. For example, the following, Fig. 6, shows a small variation in
formats in the same document where information is presented in different ways and how the robust algorithm
was able to handle the parsing of information irrespective of the format type.

Figure 6—Managing ingestion formats

Contextual disambiguation is also very critical. This is performed by making use of the metadata
wherever available and machine learning. Metadata is a set of data that describes and gives information
about how other data is organized in context. Fig. 7 below shows how a typical row-major order parsing were
parsed incorrectly by showing Location as State and Houston as Texas. By modifying the algorithm to learn
the context and by allowing it to recognize the first row as a header column with the distinct background
color of the cells, the Location is now correctly stored as Houston and State as Texas. There were several
other challenges such as merged cells and section headers in the middle of a series of rows, which had
similar issues. The algorithm continuously evolved and improvised to overcome all these common obstacles
enabling it to ingest multivariant data with a 99% accuracy.



SPE-201725-MS 9

Figure 7—Context disambiguation

PDF* Schematics.   Extraction of schematic information from PDF documents requires the ability to
infer the cell relationships, which is normally available in Excel. Fig. 8 below shows a PDF schematic
where casing and tubing data columns at the header level are merged with detailed information (e.g. outer
diameter, inner diameter weight, grade) in multiple columns. A standard PDF parser would consolidate
all the columns data below casing and tubing as one set loosing the granularity of the information around
each specific attribute. Thanks to the general-purpose format recognition algorithm that was developed for
Excel schematics, it was fairly straightforward to adapt the algorithm for PDF without heavily relying on
the cell-level information. Fig. 9 below shows how a PDF schematic was successfully parsed with details
of individual columns of casing, tubing and equipment data.

Figure 8—Well schematic PDF data format example
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Figure 9—Extracting key value pairs from unstructured data

JPEG* Schematics.   Extraction of schematic information from JPEG documents requires employing
Optical Character Recognition (OCR) techniques, in addition to the techniques discussed above. OCR is
the electronic or mechanical conversion of images of typed, printed data into machine encoded text. To get
high accuracy, a specific OCR metadata library relevant to well completions with a machine learning model
was used to recognize equipment and patterns.

The biggest challenge using OCR is associating the text with a column header. For example, column
headers could be centered while fields could be left justified. Even when they use the same justification,
the text could still be of different lengths in each column, and it required use of several heuristics to
disambiguate, which column a particular piece of text belongs to. The semantic dictionary, which is built
specifically for the schematics knowledge base, also comes in handy to correct the spelling of several words
that could be broken due to inaccuracies in the OCR-level parsing.

Free form text.   A similar process is followed for the ingestion of completion operational data into the data
lake. Using NLP (Natural Language Processing), ambiguous data in text format is converted into structured
format and associated with the context. NLP uses identifiable common text, words, language and converts
them into computer enabled text for storing data. Fig. 11 below shows operational data and their failure
mode's with well, model and equipment part numbers embedded into the text in thousands of rows. To
identify the part number or model number has been failing more frequently on a specific well, the users
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have to go through the entire list of wells, identify part numbers, record them and output into chart, which
is extremely cumbersome.

Figure 10—Subset of the output of the digitizer for a sample JPEG schematic
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Figure 11—Operational data with key value pair extraction

Using NLP, this data is now moved into structured format where data can be queried and analyzed at the
end user's fingertips. The process involves tokenization, developing a semantic dictionary of well names,
part numbers and then application of a fuzzy parser for disambiguating and recognizing multiple variations
of representations referring to the same piece of information.

Data Analytics
The creation of structured data across both well architecture and context provides for the foundation of the
analytics work. With structure, it is possible to explore complex correlations across the vast sea of historic
designs. The best practices, lessons learned, and domain knowledge intrinsically captured in each design
can be liberated to develop generalized insights into optimal design. To extract these complex correlations,
advanced data science techniques and machine learning need to be coupled with experienced subject matter
expert input. Combining the two allows for both the development of intelligent engines that can consider all
possibilities within the vast data sets and draw conclusions that are beyond the means of human designers.
The approach eliminates the highly subjective and siloed problems that face traditional methods, and allow
for us to truly develop optimal designs that consider all past successes and failures.

Clustering.   Other novel techniques were employed to extract value and relationships from the data.
Clustering allowed for the discovery of larger and hidden relationships which may not be known or
expected in advance. The clustering is driven both through domain rules and via hierarchical tree algorithms.
Extensive domain rules provided a foundation to help guide the clustering in the initial stages. These rules
captured simple priorities that inherently exist in the selection of equipment, for example, that a gas lift
mandrel is of far more importance than a pup joint. These rules provided a lauching point for the data mining
algorithms to then create increasingly complex clusters that allowed for the identification of relationships
that were not apparent to the completion engine. These clusters eventually described discrete architectures
that had been employed to address a myriad of specific well and reservoir conditions while following best
practices and design procedures.

Heuristics Engine.   Once key value pairs are available from the analytics engine, there are a number of
heuristics that are applied. These are described below.

Standardization of Units.   The quantities referred to in the schematics do not use a standard unit. For
example, fields such as ID or OD, may be represented in centimeters or inches. Fields such as length and
depth may be represented in feet or meters depending on the well location or convention used by a particular
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operator. The units may appear as (m), (ft), (in), meters, mts, in, feet, mts, in an almost endless variation.
They may appear in one place or multiple places in the document or in some cases do not appear at all. We
therefore had to employ a heuristic algorithm that uses a fuzzy parser that can consider all these variations
and establish the right unit for each metric with a very high confidence value. Once a unit was established, all
quantities are converted to a standard unit system for the purposes of storing in the data lake and subsequent
visualization.

Categorization of equipment.   As there are too many individual equipment variations (300,000), it is
important to categorize them by the family they belong to. When we perform data analysis, we can gain
insights on the equipment categories first, before drilling down into individual equipment. All these are
done by a combination of unsupervised learning and domain-informed rules.

Data Synthesizer.   The data synthesizer (Fig. 12) component takes data from multiple sources such as the
well database, service quality reports and the key value pairs in the digitized version of the schematics and
combines all the relevant pieces of information found in each of these into a single synthesized record for
each well. The main challenge here is that often there's no single primary key to do a direct join. This is due
to the nature of the manual data input associated with these records and the lack of enforcement of any sort
of industry wide consistency. The data synthesizer uses unsupervised machine learning to accomplish this
by understanding the various patterns in these data sources and combining them, only when it can establish
a very high confidence level.

Figure 12—Data synthesizer

Thanks to the data synthesizer, we now have a structured database where every well has consolidated
information about its operating environment including, for example, pressure, temperature, field and
produced fluid, along with the equipment used at various depths and any failures reported with those
equipment during the servicing period. We also calculated a reliability score for each equipment.

Visualization and Insights
Now that we have the consolidated data, the next step is to make this data available for mining for insights
by experts where they can answer any question they may have on these wells and confirm any hypothesis
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about well performance. This is done by connecting the synthesized database to Microsoft Power BI*. We
created different numerous views (Fig. 13) of the data including well level and equipment level views, from
which all details about data for a particular equipment can be explored.

Figure 13—Example of the Power BI Insights

We also created a rich set of filters (Fig. 14) to be able to query any subset of data and find patterns within
those subsets. These filters can also be customized by the individual users.

Figure 14—Data filters for end user interaction

Visualization of clusters.   As part of the data analytics process, clusters of data created the regrouped similar
architectures and allowed for the delivery of generalized insights based on both hardware and completion
context.

The 3D plot (Fig. 15) depicts a higher-level similarity between the schematic architectures. Similarity
is calculated based on features like operating conditions (e.g. pressure, temperature, and reservoir type),
equipment and order of installation. Different colors represent different clusters. The optimum number of
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clusters is determined based on the distortion metric using the elbow method. A K-means algorithm is used
for clustering and the clusters are visualized in three dimensions with the help of the principal component
analysis (PCA) technique. PCA helps in reducing dimensionality by extracting important features from the
input. Clustering can be done again on the clusters where intra-cluster distances are high. This gives more
granularity. For clusters that are very close (inter-cluster distance is low), they can be clubbed together,
which provides a good representation of the cluster.

Figure 15—Visualization of clusters using PCA

Results
Harnessing pioneering natural language processes and analytics to build a scalable ingestion pipeline for
completion schematics (Excel*, PDF* and WITSML*), track record and performance data, the project has
successfully structured diverse data sets into a single data lake. Machine learning and analytics mapped
correlations between equipment, performance, and reliability. Models harnessed all available data and
provide recommendations on optimum well completion designs that are not only fit for environment but
also fit for the specific well and its unique characteristics. A total of 24,032 wells have been successfully
migrated, mapped, and used to develop a machine learning algorithm that can now provide optimum
completion configurations and designs.

Fig. 16 shows the minimal viable product (MVP) of insights into completion configurations and designs
incorporating nonproductive time, reliability of each well with respect to various operating environments
and root cause failures. It showcases the completion equipment configuration and equipment detail with
depths, ODs, IDs, and other key parameters. The user has the ability to define high-level operating
environment constraints—allowing them to explore optimum solutions. Each solution is coupled with data
insights that speak to both the reliability of the equipment and the root cause for any issues that might have
previously been encountered when running these designs.
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Figure 16—Visualization of clusters using PCA

The current solution was developed in a highly agile fashion targeting a true MVP. It therefore doesn't
yet have the means of displaying the well schematic in a standard visual format although this is currently in
development. Future versions of the solution will migrate the frontend to Angular and deliver an enhanced
user experience addressing key user workflows. The core value though is delivered through the data, and
future iterations will target expanding the ingestion pipelines to include more diverse data sources while
also expanding on the insights available. Data remains the foundation of the product, and as the solution
is agnostic of the location of the source data, it should be straightforward to couple this to diverse data
sets from players across the industry so that they can liberate their own data and extract value. With the
development of more insights, the value grows exponentially and delivers optimum solutions taking into
consideration all knowledge and data relating to the target basin.
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Conclusion
Traditional well completion selection suffers from the numerous fundamental shortcomings highlighted
throughout this paper. A forward-looking solution is required to address this problem. Leveraging the latest
offerings from the digital transformation have allowed for the creation of a novel approach to solving well
completion design:

1. Advances in NLP, OCR, ML, AI and cloud technologies provides an ideal opportunity for
transforming the well completion selection process

2. Data ingestion using NLP and OCR have successfully migrated unstructured completion schematic
data into structure data

3. Structure data is mapped and correlated to diverse data sources and operating parameters for
development of complex rules engines

4. Clustering of data allows for the identification of similarities in equipment failure patterns,
equipment type, configurations, operational efficiencies

5. Advances in data mining and analytics modeling deliver insights into the optimum completion
design

6. Cloud infrastructures provides the scalable infrastructure to deliver a solution that can be extended
and organically grown as more data is made available to the solution
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Nomenclature
ACRONYM MEANING

OCR Optical character recognition
NLP Natural language processing
ML Machine learning
AI Artificial intelligence

MVP Minimal viable production
OD Outer diameter
ID Inner diameter

WITSML* Trademark data exchange format from Energistics
PDF* Trademark of Adobe

Excel* Trademark of Microsoft
Power BI* Trademark of Microsoft

JPEG* Joint Photographic Experts Group
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